

RAMAKRISHNA MISSION VIDYAMANDIRA

 CBCS Syllabus B.Sc. Computer Science Honours

Semester-V

Credit: 6

Course Type: Discipline Specific Elective
Course Outcome:

i) Define the phases of a typical compiler, including the front- and backend.

ii) To have an in depth understanding of data structure and design principal of a compiler.

iii) To be able to understand various parsing techniques.

iv) Explain the role of a semantic analyzer and type checking; create a syntax-directed

definition and an annotated parse tree; describe the purpose of a syntax tree.

v) Explain the role of different types of runtime environments and memory organization for

implementation of typical programming languages.

vi) To have a practical idea about designing a compiler using specific tools.

CMSA DSE T: Compiler Design

Credit: 4 Marks: 50

Introduction to Compiler and Review of Automata: Compilers – Analysis of the source

program, Phases of a compiler, Grouping of Phases – Compiler construction tools, Role of

Lexical Analyzer, Input Buffering – Specification of Tokens- design of lexical analysis (LEX),

Finite automation, Conversion of regular expression of NDFA – Thompson’s Conversion,

Derivation - parse tree – ambiguity [10 L]

Syntax Analysis- Parsing: Definition - role of parsers - top down parsing - bottom-up parsing;

Left recursion - left factoring - Handle pruning , Shift reduce parsing; LEADING- TRAILING-

Operator precedence parsing; FIRST- FOLLOW; Predictive parsing; Recursive descent parsing;

LR parsing – LR (0) items - SLR parsing; Canonical LR parsing; LALR parsing. [15 L]

Syntax Directed Translation: SDT definitions; Dependency graph; Attribute Grammar,

Synthesized attributes – Inherited attributes; L attribute, S attribute, Semantic rules. Annotated

Parse Tree. [5 L]

Intermediate Code Generation: Intermediate Languages - prefix - postfix - Quadruple - triple -

indirect triples; Assignment Statements; Boolean Expressions; Case Statements; Back patching –

Procedure calls. [10 L]

Code Generation: Issues in the design of code generator; The target machine – Runtime Storage

management; Basic Blocks and Flow Graphs; Next-use Information – A simple Code generator;

DAG representation of Basic Blocks; Peephole Optimization. [10 L]

Code Optimization: Introduction– Principal Sources of Optimization; Optimization of basic

Blocks; Loop Optimization; Introduction to Global Data Flow Analysis; Runtime Environments

– Source Language issues; Storage Organization; Storage Allocation strategies – Access to non-

local names; Parameter Passing. [10 L]

CMSA DSE P: Compiler Design Laboratory

Credit: 2 Marks: 25

Writing programs to recognize numbers, identifiers, token; [10 L]

Introduction to with lex; bison, yacc. [15 L]

Designing lexical analyzer using lex or flex; Designing predictive parser, LALR Parser;

Generating machine codes. [15 L]

Recommended Books:

1. Compilers: Principles and Tools by Aho, Ullman, Sethi, Lam; 2
nd

 Edition; Pearson.

2. Compiler Design in C by Holub; 1
st
 Edition; Pearson.

3. Theory and Practice of Compiler Writing by Tremblay, Sorenson; 2
nd

 Edition; MacGrawHill.

4. Lex and Yacc by Levine, Mason; 2
nd

 Edition; O’reilly/SPD.

5. Flex and Bison- Text Processing Tools by Levine 1
st
 Edition; O’reilly/SPD.

